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ABSTRACT 

The  radiation  pattern of a TEM  mode  thin-walled  parallel- 
plate  waveguide is analyzed  by a surface  integration  technique 
in  conjunction  with  wedge  diffraction  theory.  The  surface  integral 
is obtained  by  the  Green's  second  identity.  The  fields  on  the  surface 
are  calculated  by  plane  wave  diffraction  and  f irst   order  interactions 
between two edges of the  guide  (which  were  employed  in a previous 
pattern  analysis  by  the  wedge  diffraction  method).  The  surface 
integration  technique  provides  an  improvement  in  the  accuracy of 
the  pattern as compared to  the  wedge  diffraction  method. 
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CHAPTER I 
INTRODUCTION 

Radiation  pattern  analysis is a primary  tool  in  the  design of 

antennas.  Consequently,  the  development  and  improvement  of 

methods of ana lys i s   a re  of particular  interest  to  the  antenna 

designer. Small aperture  antennas  such  as  open-ended  wave- 

guides  and  slot  antennas  are of particular  interest   in  applications 

for  missiles,   space  crafts,   and  airborne  and  reentry  vehicles.  

The  idealized  two-dimensional  parallel-plate  waveguide  which 

is treated  below  provides  insight  into  the  diffraction  behavior of 

practical   three-dimensional  antennas.   The  research  reported 

here  provides  an  improvement  in  the  accuracy of the  parallel- 

plate  guide  pattern as compared  to  the  wedge  diffraction  method. 

Wedge  diffraction  theory  has  been  previously  applied  to 

analyze  the  electromagnetic  characterist ics of waveguides  and 

horn  antennas. 

generally  gives  accurate  results,   l imitations  on  accuracy  occur 

under  certain  conditions.  Specifically,  in  the  wedge  diffraction 

analysis of the  radiation  pattern of the  TEM  parallel-plate 

waveguide, as shown  in  Fig. 1,  the  result  is  not  accurate  in 

the  region  near  the  plane of the  aperture  especially  for  guide 

widths  on  the  order of X/2 or   l ess .  

1, 2, 3 Although  the  wedge  diffraction  method 
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Fig. 1. Geometry of parallel-plate  waveguide. 

The  purpose  of  the  development  in  this  publication is  to 

es tabl ish a method of antenna  analysis  which  overcomes  the 

l imitations of previous  applications of wedge  diffraction  theory. 

The  technique  used i n  the  research  reForted  here   employs  an 

integration  involving  the  f ields  over  the  surface  represented by 

the  x-axis  in  Fig.  1. The  same  basic   approach  has   been  used 

by  Mikuteit4  in  the  analysis of coupling  in a three-guide  array.  

The  validity of this  technique is demonstrated by the 

improved   accuracy  of the  radiation  pattern  analysis  for  this 

problem as compared  with  the  wedge  diffraction  analysis.   The 

bas is   for   the   compar ison   i s   the  known exact  solution. 
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It is believed  that this method  provides a means   for  similar 

improvement of the  accuracy of the  radiat ion  pat tern  analysis   for  

a waveguide  mounted  in  an  infinite  ground  plane.  There is no 

exact  solution  known  for  this  case.  The  radiation  pattern  for  the 

waveguide  in  an  infinite  ground  plane is now being  analyzed  and 

wil l   be   presented  in  a later  publication. 

In  the  wedge  diffraction  method,  the  incident  plane  wave 

causes   s ingly  diffracted  waves  to   emanate   f rom  edges ( 1 )  and 

(2) as shown  in  Fig. 1. Doubly  diffracted  waves  are  produced 

by  the  incidence of the  singly  diffracted  waves on the  opposite 

edges.  The  doubly  diffracted  wave is approximated as diffraction 

by an  iflcident,  isotropic,  cylindrical  wave.  This  approximation 

of the  non-isotropic,   singly  diffracted  wave  as  an  isotropic 

wave  results  in  the  type of above  mentioned  limitation.  The 

inaccuracy  which  results  from  this  approximation  occurs 

mainly  in  the  regions  near  the  shadow  boundary of the  incident 

cyl indrical  wave. 

Ryan  and  Rudduck'  have  obtained  the  radiation  pattern of 

paral le l -plate   waveguides   with  arbi t rary  geometry  by  including 

only  the  single  and  double  diffraction  contributions. Yu and 

Rudduck3  have  included  the  third  order  diffraction  contribution 

and  subsequently  employed a self-consistent  method  which  in- 

cludes all h ighe r   o rde r s  of diffraction  from  each edge. The 
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radiation  pattern  obtained by the  above  analyses  have  been  found  to 

be  satisfactory  in  general .   However,   they  do  not  describe  the 

pat tern  adequately  in   the  region 60" < 8 < 120" where 8 is defined 

in  Fig. 1. 

In this  analysis a surface  integration  technique  will  be 

employed  in  conjunction  with  wedge  diffraction  theory to improve 

the  radiation  pattern  in  this  region.  The  formulation of the  surface 

in tegra l  is  presented  in   Chapter  11. The  validity of this  formulation 

is  tested  on  an  isolated  half-plane  in  Chapter 111. Then  the  radi-  

a t ion  pat tern of a parallel-plate  waveguide  is  obtained i n  Chapter 

I V  using  this  formulation. 
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CHAPTER I1 
FORMULATION O F  HALF-SPACE RADIATION 

IN TERMS O F  SURFACE  INTEGRAL 

In  this  chapter  the  radiation  into  the  half-space y > 0 is  ex- 

p re s sed   i n   t e rms  of the  fields  on  the  planar  surface y = 0 as 

shown  in  Fig. 2. Since  the two dimensional  problem  in  which  the 

fields  are  independent of z is only of interest,  the  radiation  can 

be  expressed  in   terms of the  fields  on  the  x-axis.  Only  the  TM 

case  is   considered,  i. e.,  the  magnetic  field is z-polarized. 

Y 

X 

Fig. 2. Geometry of half-space  radiation  problem. 

The  field Hz satisfies  the  wave  equation  in  the  region y > 0 

(1)   (V t k ) H ,  = O  
2 2  

2TF 
X where  k = -  is the  free  space  propagation  constant.  The  magnetic 
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f ie ld   may  be  expressed  in   terms of the  free  space  Green's  function 

GO, a s  

(2) 
aH,(x! y' ) 

Hz = - dx' - H,(x', 0 )  
-00 aY ' aY ' y' = o  y'=O 

where  the  prime  sign ( I  ) denotes  the  source  coordinates.  Two 

choices of boundary  conditions of the Green's  function  at y' = 0 

are   poss ib le  for this  half-space  geometry.   These  are 

( 3 )  Go(x, y;x',O) = 0 

or 

Using  either Eq. ( 3 )  o r  Eq. ( 4 ) ,  the  expression  for  the 

magnetic  field Hz, is  given  by  either Eq. ( 5 )  o r  Eq. ( 6 ) ,  

re  spec  t ive ly, 
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Using  the  asymptotic  form of the  free  space  Green's  function,  valid 

for   large  values  of p in  the  polar  coordinate,  and  the  appropriate 

far field  approximations,  it   can  be  shown  that 

( 8 )  * jk s in  8 Go 

y'= 0 

1 

where p = (x2+y2)'  and 8 = tan - l  Y 
X 

Substituting Eq. (7) into Eq. ( 6 )  and Eq. (8)  into Eq. (5 )  , 
-j(jv+%) 

and  suppressing  the  factor 

radiation  pattern,  is given  by 

e , the  angular  variation,  or 

o r  

Q) 

(10) R z ( 8 )  = jk  sin 8 HZ(xl, 0 )  e 
+jkx' COS 8 

dx' . 

Thus, i f  ei ther  the  magnetic  f ield H(xf 0) , or  its normal   der ivat ive 

i. e.,  tangential  electric  field  E(x: 0)  , is known  on  the  surface 

(x1-axis) , the far field  radiation  pattern  can  be  evaluated. 



A combination of the  equivalence  principle  and  the  image 

theory  can  also  be  employed to derive  Eqs. (9)  and  (10).  This 

can  be  done  by  evaluating  the  equivalent  magnetic  and  electric 

currents  for  the  tangential   f ields  on  the  surface.  By use of 

image  theory  for  this  half-space  geometry,  the  radiation  into 

y > 0 can  then  be  obtained  from  either  twice  the  equivalent 

electric  current  or  twice  the  equivalent  magnetic  current. 
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CHAPTER I11 
PLANE WAVE DIFFRACTION 

BY A HALF-PLANE 

Y 

PLANE WAVE 
INCIDENT 

Fig. 3 .  Plane  wave  diffraction 
by a half-plane. 

In  this  chapter  the  relationship  is  shown  between  the  surface 

integral  formulation,  for  plane  wave  diffraction  by a half-plane, 

and  the  exact  s.olution.  In  the  comparison  process  several  re- 

lationships  are  derived  which  are  employed  in  subsequent  chapters.  

A. Half - Plane  Diffraction 
Formulation 

The  problem of straight  edge  diffraction by a perfectly  con- 

ducting  half-plane  was  first  solved by Sommerfeld.  For  grazing 6 

incidence of a plane  wave  with  its  magnetic  field  polarized  in  the 

9 



z direction, the total   f ie ld   in  the geometrical   optics  shadow  region 

( 0  < 8 < IT) as shown  in  Fig. 3,  is  given  by 

The  incident  wave  is   normalized  to  have  unit-amplitude,   and 1 

the  wedge  diffraction  function V,(p ,+ ,  n)  for a wedge of angle  (2-n) IT 

i s  discussed  in  Appendix A. For  a half-plane (i. e . ,  n = 2 ) ,  the 

function V B ( p ,  +, 2) is  given  by 

- j ~  d~ 2 

I 

where a = 1 + C O S  +. 
For large  values of kp( 1 + cos $)  , Eq. (12) may be asymp- 

totically  approximated as 

Therefore ,   the   magnet ic   f ie ld   for   the  radiated  wave i n  the  region 

( 0  < 8 < IT) is given  by 

10 



It is evident   f rom Eq. (14) that  the  radiated  wave  appears  to 

be a directional  cylindrical   wave  radiating  from  the  edge of the 

half-plane.   Since  only  angular  variations  are of interest   the  factor 

-j  (kp + z) 
m 

e is suppressed. This gives  the  following  radiation 

pattern  function 

B. Surface  Integral   Representat ion 

The  surface  integral   representat ion of the  far-field  radiation 

pa t te rn  as shown  in Eqs. (9) and (10) can  be  evaluated i f  the  field 

is known  on  the  surface S. For  plane  wave  diffraction by  a  half - 
plane,  the  diffracted  field  and  its  normal  derivative  on  the  surface 

S (y=O)  are   given  by 

VB(X' ,R  t , 2) = - e (x' L 0 )  , 1 -jkxf 
2 

(16) H,(x',O) = 
TT 

- j  T 
VB(X', 2T,2 ) = - 

- j k l x '  ' sm 2 
.e - j T  e  e dT 

J;; 

(x' I 0 )  

and 



I 
\ 0 (x' < 0 )  . 

The  integral   for  the  radiation  pattern  which i s  obtained by 

substituting Eq. (17)  into Eq. ( 9 )  can be analytically  evaluated, 

giving 

Tr 
CD- 

j 4  e 
-jkx'( 1-cos 0) 

(1 8 )  R,(o) = 2 r e dx ' . 
0 

J x 1  
Tr . _  

J 4  
2 e  * - j u  

du 
J- 

- 1  - 
2 s in  - 0 

2 

Comparing Eq. ( i 8 )  with  Eq.  (15)  it i s  seen  that  the  radiation  pattern 

function  in  the  shadow  region 0 < 8 < TT, as obtained by the  surface 

integration  technique, is of course,   exactly  equal to the  exact 

solution. 
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F r o m  the other  boundary  condition  on  the  Green's  function 

as shown  in Eq. ( 3 ) ,  the   integral   representat ion of the  pattern 

function  can  be  derived  by  substituting Eq. (16j  into Eq. ( l o ) ,  

giving 

(19) R,(0)  = j k s i n 0  
-jkx'  (1  -cos 8 )  

dx' . 
0 

t j k s i n  8 1 e 
t j k x ' c o s  8 VB(X' , 2lr, 2) dx' . 

evaluated  by  means of a distributions  or  generalized  function, '  

giving 

(20) 
j k   s in  0 - jkx ' ( l - cos  0) 

2 
- dx' 

0 

- - jk  sin 0 IT 6(k( 1 -cos 0)  ) + s i n  8 
2 2( 1-cos 0)  . 

The  second  term  in  Eq. (19) can  be  simplified  by  inter-  

changing  the  limits of integration  obtaining, 

(21) 
-jkx'  cos 0 VB(X' , 2 ~ ,  2) dx' 

0 

For values of x' greater   than  some  value xmr the  function 

VB(x' , 2 ~ ,  2) i n  Eq. (21)  can  be  approximated by the  asymptotic 

13 



(22)  jk  s in  0 l x I n  e-jkx'   cos 0 
V ~ ( X ' ,  2 ~ ,  2) dx' 

0 
TT - j  - 
* e  t j k s i n 0   d x '  

- j k x ' ( l t   c o s  0) 

xm 2 J k x '  

The fir s t   t e r m  is numerically  evaluated  by  computer.   The 

second  te rm  can  be analytically  evaluated  in terms of the  Fresnel  

integral   which is defined as  

where 
lT 

F(a) = 0 

Consequently,  the  second  term  in Eq., ( 2 2 )  is  given b y  

t J 4 S  e 

lT 
a -jkxl ( 1  t c o s  0) 

(24) 
k s i n 0  e dxt 

r 
/X' 

X m  

s i n  0 -jt 
- e- dt  

JZTlt 
kxm( I t  cos 0 )  

s in  8 jZf - 
- 2d" 

e F(kx,( 1 t cos  0 ) )  . 

14 



This   Fresnel   integral   wi l l   be   employed  f requent ly   in  the next 

chapter   to   evaluate   integrals   which  decay as x - ~ .  
1 

Using Eqs. (20)  to  (24),  the radiation  pattern  function  in the 

shadow  region (0 C 8 < T) as indicated  in Eq. (19) ,   can be 

wr i t ten  as 

sin 8 + e F(kxm(  1 + c o s  e)) 
2 4- 

Numer ica l   resu l t s  have been  computed  from  Eq.  (25)  for  values 

of xm ranging  from  two to  ten  wavelengths  and  for  several  values of 

the  angle theta as shown  in  Table I. Accurac ies  of about 0 ,  5% a r e  

obtained  by the numerical   evaluation as compared  with  the  exact 

solution  in Eq. (15).  Thus,  we  can  conclude  that  this  method of 

calculating  the  radiation  pattern is  satisfactory. 

TABLE I 

xm in  A 

Theta   in   Degrees  142 s in  5) 2  5  10 

70 
80 
90 
100 

0. 87  172 0.87199 0.87141 0. 87125 
0. 77786 0. 77610 0. 77642 0. 77646 
0. 70711 0.70598 0.70640 0.70654 
0. 65270 - - 0.65215 

15 
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This  evaluation of the  diffracted  fields  from a half-plane il- 

lus t ra tes  a method  for  evaluating  the  surface  integral  for  which  the 

fields  on  surface S decay  as  and  indicates the accuracy of the 

numerical  evaluation.  Since  computer  evaluation  for 0 < x' < x, 

is  expensive, i t  is  desirable  to use as   sma l l  a value  for xm a s  

practical. 

1 
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CHAPTER IV 
THE RADIATION PATTERN O F  A TEM MODE 

PARALLEL-PLATE WAVEGUIDE 

In  this  chaFter  the  radiation  pattern of the parallel-plate  wave- 

guide,  shown  in  Fig. 1, is analyzed  by  the  surface  integration 

technique  discussed  in  the  previous  chapters.  The  parallel-plate 

waveguide  for  this  problem is formed  f rom two half-planes  sepa- 

rated  by a guide  width h, and  aligned  for a normal  truncation angle. 

The  TEM  mode  radiation  pattern,  due  to  an  incident  plane 

wave  propagating  parallel  to  the  axis of the  guide,  with  the  electric 

field  polarized  perpendicular  to  the  guide  walls, is analyzed  in  the 

following  paragraph,  The  exact  solution  for  this  particular  geometry 

has  been  obtained  by  the  Weiner-Hopf  technique as given  in  Appendix 

B. 

Because of the  symmetrical  excitation  and  geometry,  the 

pat tern is  symmetr ical   wi th   respect  to  the  angle 8, Thus,  the 

pat tern is  calculated  only  in  the  region 0 < 8 < 7~ and  consequently, 

the  surface of integration is  chosen  to  correspond  to  the  x-axis. 

(However, if the  pattern is chosen  in  the  region - 7 ~  < 8 < 0, the 

surface S corresponds  to y = -h. ) 

The  radiation  pattern  can  be  calculated  using the Green 's  

function  with  either  one of its  boundary  conditions (Eqs. (9)  and (10) ) .  

However,  in the following  development,  only Eq. (10)  will  be 
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employed,  which is rewritten  for  convenience. 

The  magnetic  fields H,(x: 0 ) ,  on  the  surface S, a re   ca lcu-  

lated  by  the  theory of wedge  diffraction. 1 Three   t e rms  of the  surface 

field  distributions  will  be  considered. 

The  f i rs t   term  to   contr ibute  to the  pattern  consists of the 

diffracted  fields (A,  B, C )  on the  surface S, as shown  in Fig. 4. 

Y 

Fig. 4. Firs t   term  (s ingly  diffracted 
waves  f rom  both  edges) .  
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These f ie lds   are   those of the plane  wave  diffraction by the  isolated 

half -plane s : 

(x' > 0) 

(x' > 0) 

where 

a nd 

(28) C: Hi1) (x',O) = VB(x l ,  2 ~ , 2  ) (x' < 0) 

The  subscript   1,2  denotes  edges (1) and (2)  respectively  and 

the  superscript   (1)  denotes  the first order  diffraction  due  to  the 

incident  plane  wave. 

It is noted  that  the  singly  diffracted  field  on  the  upper  surface 

S (x 20) is proportional  to  for  values of x '   greater  than  some 
1 

value xm. It   can  be  shown  that  the s u m  of Eqs. (26) and (27)  for 

x' 2 xm is approximately  given  by 

The  singly  diffracted  field  on  the  lower  surface S (x' 2 0)  is that of 

the  isolated  half-plane as discussed  in  the  previous  chapter.  

19 



The  radiation  pattern  function R z l ( 9 ) ,  due  to  the  singly  dif- 

f ractedfields   on  the  surface S, can   be   expressed   in   t e rms  of (1) num- 

erical   integration  over a finite  portion of the  surface  and ( 2 )  the 

Fresnel   integral   which  represents   the  integrat ion  over   the  remainder  

of the  surface  (the  same  technique  was  used  in  Chapter 111) giving 

R 

t rxm jk  s in  8 e -jkx'cos 8 VB(X' , ~TT, 2) dx' 

0 

0 
3Tl 

ka  sin 8 e " 4 
t F(kxm( 1- cos e)  ) 

J 1  - cos e 

The  f i rs t  two t e r m s   i n  Eq. (30)  correspond  to the lower  surface 

integration  obtained  from Eq. (22)  whereas  the  last   two  terms 

represent  the  upper  surface  integration. 

The  next  two  contributions  to  the  radiation  pattern  take  into 

account  fields  on  the  surface S, which  result   from  interactions 

between  the  half-planes.  The  second  term  to  contribute  to  the 

pattern  function R Z z ( 0 )  consis ts  of the  doubly  diffracted  fields o n  

the  surface S from  edge (1 )  which  resulted  from the singly  diffracted 

wave  from  edge ( 2 ) .  The  doubly  diffracted  fields  are  analyzed  by 

20 



the  wedge  diffraction  method. By this  method  the  singly  diffracted 

wave  from  edge (2)  is  approximated  by a uniform  cylindrical  wave 

in   o rde r  to analyze the doubly  diffracted  wave  from  edge (1) .  Thus, 

the  effective  source  for  the  singly  diffracted  wave is a line  source 

located  at   edge (2) as shown  in  Fig. 5. 

4 
Y 

h 

. . . - - t t t ,  UNIFORM LINE SOURCE 

0 

Fig. 5. Second t e r m  (doubly  diffracted 
wave  from  edge  (1) ) . 

The  approximation  by  an  isotropic  line  source  is  apparent  by 

examining  the  plane  wave  diffracted  field  in  the  direction  as  shown 

in  Fig. 5. 

Therefore,  the  amplitude of the  line  source  located at edge (2)  

- j  Y i s-e- . The  doubly  diffracted  field  from  edge ( 1 )  at the  surface S ,  

21 



is obtained  by  application of cylindrical  wave  diffraction  (see  Appendix 

A) and is given by 

i o  (x' ' 0 )  

(x' < 0 )  

where   the   superscr ip t  ( ? )  corresponds  to  second  order  diffraction. 

The  assumption of uniform  cylindrical  wave  incidence,  in  the 

previous  applications of the  wedge  diffraction  theory,  does  not 

accurately  give  the  radiated  f ields in the  region  near 8 = 9 0 "  a s  

will  be  shown  later.  The  surface  integration  technique  improves 

the  accuracy  in  this  region  since  i t   includcs  thc  effect  of the  non- 

isotropic   nature  of the  wave  from  edge ( 7 ) .  

For  Ix '  I greater   than  some  value of x, the  doubly  diffracted 

field  in Eq. (32)  can  be  asymptotically  approximated by 
Tr - j  - 

( 3 3 )  HI (x ' ,  0 )  % - ( 2) 4 e - j k l x ' I  -e  vB(h ,  270°,  2) (X' < 0 )  
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It is noted  that Vg(h,  270°, 2) is a constant,  thus  the  diffracted 
1 

fields  in Eq. (33)  is proportional  to Ix' I -'. Thus,  the  contri- 

bution of the  doubly  diffracted  field  from  edge (1) on  the  surface 

S, to  the  pattern  function Ra2(B) ,  is given by 
I 

The  third  term to contribute  to  the  pattern  consists of the 

doubly  diffracted  f ields  from  edge (2)  on the  surface S .  These 

f ie lds   are   calculated  in   the  same  way  as   the  doubly  diffracted 

fields  from  edge ( 1 ) .  In  this  case,  the  singly  diffracted  wave 

from  edge (1 )  is represented  by  an  isotropic  line  source  at 

edge ( 1 ) .  The  doubly  diffracted  fields on the  surface,  S ,  f rom 

edge (2 )  resul t   f rom  the  diffract ion of the  uniform  wave  from 

this  equivalent  line  source a s  shown  in Fig. 6. The  doubly  dif- 

fracted  f ield  from  edge (2)  is  given by 
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where 

cy2 = t an  - - 1  x' 
h .  

Y 

P 

0 SURFACE s 
* x  

-"---t t -- UN I FORM 
v L I N E  SOURCE 

h ' I 

Fig. 6. Third  term  (doubly  diffracted 
wave  from  edge ( 2 ) .  

For la rge   va lues  of x' , the  sum of the  two V B  funct ions  is  

extremely  small .   Therefore ,  I d 2 2 )  (xI,o) is   assumed  negligible 

f o r  x greater   than  some  value xm. 

Thus, the  contribution  to  the  radiation  pattern  function R Z 3 ( e ) ,  

due to the  doubly  diffracted  field  from  edge ( 2 ) ,  is   g iven by 

hrz 
(36)  R, , (8)  =-k s i n 8  - e - J k ( h + r 2 )  j k h  t r 2  + j k x '  c o s  8 

& x '  
e e 

0 
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TABLE I1 

The pattern function R,(8) = r j k  sin 8 e 
jkx' C O S  8 

H, (x' 0) dx' 

Lower  Par t  !? + l x ' l r n  
U er P a r t  

Integration -a <x' I -xm 
a' 

-xm 5 x' 5 0 

I n 
3n 

1 First 
: Term ! e F(kxm(l t c o s  9)) I sx" jk  sin 9 e sin 9 j 4 -jkxI cos 9 s" 

+ j  T 
tjkx' cos 9 ka  sin 9 e 

~ RZl(9) ~ Z J - K X  
vB(X', 2T, 2) jk  sin 9 e 

" 0 ': 0 
JG 

1 

, 
dx ' I X [ +.e-jkr' t v  r 

B( '"' 2 ) 1 d X '  1 X F(kxm(l -cos  9 ) )  

I I X F(kxm(l  t cos 9)) 

Third 
T e r m  
R Z 3  (e) 



The  radiation  pattern  function of the  parallel-plate  waveguide 

(Fig. 1) due  to   the  three  terms  (Eqs.  ( 3 0 ) ,  (34)  and ( 3 6 ) )  a r e   p r e -  

sented  in   Table  I1 in  the  appropriate  regions.  

Both  the  magnitude  and  phase of the  f i rs t   two  terms of the 

radiation  pattern  function, a s  given i n  Table 11, were  calculated 

for  five  values of guide  width  h,  ranging  from 0, 1 to 0, 5X a s  shown 

in  Tables  I11 to VII. The  effect of the  third  term  was  included  for 

guide  width of 0. 1, 0. 2 and 0. 3X. It can  be  seen  that as  the  guide 

width  increases  the  effect  of the   th i rd   t e rm  decreases .  

The  radiation  pattern of the  parallel-plate  wavcguide  formu- 

lated  by  the  Weiner Hopf technique is givcn  in  Appendix R and  has 

i ts   phase  references  to   the  center  of the  guide  aperture,  This 

phase  reference  was  shifted  to  the  edge of thc  guide so as   to   be 

the  same  as   that   in   the  surface  integrat ion technique. 

The  radiation  patterns  were  plotted  for  thesc,  five  values of 

guide  width as   shown  in   Figs .  7 to 11, It i s  noted  that for guide 

widths of 0. 2 and 0. 3 X ,  thc  \*alu(!s of thc exact  radiation  pattern 

(Weiner Hopf technique)  lies in between  the  surface  integration 

pattern  function  with  and  without  the  third  term  contribution, 

It  is  believed  that  the  radiation  pattern,  including  the  con- 

tr ibutions  due  to  subsequent  higher  order  interactions  between 

the  two  edges,  will  be  in  between  the  two  extremes  computed 

with  and  without  the  third  term  contribution.  The  fields  on  the 
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surface S, due  to  the  higher  order  interactions,   will   decrease as 

the  guide  width  increases,   The  maximum  error as compared  with 

the  exact  solution is approximately  five  percent  in  magnitude  and 

three  degrees  in  phase  for  guide  widths of 0.2 and 0.3A. The 

radiation  pattern  for  guide  widths of 0.4 and 0. 5A are   shown  in  

Figs. 10 and 11, respectively, 

The   e r ro r  is small as compared  with  the  exact  solution. It 

is  noted  that  the  radiation  pattern  formulated  by  the  surface  in- 

tegration  technique  agrees  well  even  for  the  guide  width as sma l l  

as  0. 1 X  as  shown  in Fig. 7, 

The  radiation  pattern as analyzed  by  the  wedge  diffraction 

method is also  given  in  Figs. 7 to 11, and  in  Tables 111-VII. In 

the  wedge  diffraction  method,  the  pattern is  obtained  directly 

f rom the s u m  of the  singly  and  doubly  diffracted  rays  in  region 

2 

y ’ 0. Based on the  comparison,  the  improvement  in  accuracy 

of the  surface  integration  technique is  evident. 
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RELATIVE H-FIELD 

Fig.  7. Radiation  pattern  for T E M  mode parallel-plate  waveguide (h/n = 0. 1 ) .  



TABLE III 
" 

Theta 
in 

Degrees 

1 
20 
40 
60 
80 
90 

120 
140 
160 
180 

W einc 
Mag 

1. 0 
0.990 
0.961 
0.919 
0. 871 
0. 848 
0. 785 
0. 755 
0.737 
0. 730 

-Hopf 
Phase 

89. 7 
83. 3 
76. 4 
69. 8 
63. o 
61. 4 
55. 4 
52. 9 
51. 3 
50. 9 

Double 
Mag 

1.0 
0.995 
0.982 
0.964 
0.938 
0. 800 
0.763 
0.748 
0.738 

liffraction 
Phase 

89. 7 
83.4 
76. 8 
71. 3 
68. 2 
44. 3 
47. 5 
47. 6 
47. 3 

Without Th: 
Mag 

Surface  Intergation 

0.972 
0.938 
0.898 
0. 878 
0.823 
0.792 
0.763 

d Term 
Phase 

72. 8 
65. 6 
59. 7 
57. 3 
52. 1 
50. 1 
48. 8 

With  Thi: 
Mag 

0.973 
0.942 
0.905 
0. 886 
0. 831 
0. 798 
0.767 

1 Term 
Pha s e 

76. 7 
70.0 
64. 1 
61. 5 
55. 3 
52. 3 
50.0 

Guide  Width 0. 1 X  



w 
0 

RELATIVE H-FIELD 

Fig. 8. Radiation  pattern  for TEM mode  parallel  plate  waveguide (h/X = 0. 2). 



TABLE IV 

Theta 
in 

Degrees 

1 
20 
40 
60 
80 
90 

100 
120 
140 
160 
180 

Weiner Ho f -e Mag 

1.0 
0.977 
0.916 
0. 834 
0. 747 
0. 706 
0.670 
0.609 
0. 566 
0. 542 
0.535 

Pha s e 

89.4 
76. 2 
64, 7 
53. 6 
44. 5 
40. 9 
37. 7 
33.0 
30. 0 
28. 3 
27. 7 

T 1 

I' 
Double  Diffraction T 
1.0 
0.980 
0.929 
0.871 
0. 833 
0. 619 
0.599 
0.564 
0.536 
0.519 

Phase 

89.4 
76.9 

51, 3 
42. 0 
35. 3 
34, 2 
31. 7 
29.7 
28. 5 

63. 5 

Surface  Diffraction 

Mag 

0. 891 
0. 805 
0. 720 
0.682 

0.592 
0.553 
0.528 

Without  Third  Term 

1 Phase 

63. 7 
52. 6 
43. 7 
40. 1 

32. 6 
29.9 
28. 5 

With Thi 
Mag 

0.930 
0. 848 
0.761 
0.720 

0.618 
0, 571 
0.537 

d T e r m  
Pha s e 

65. 2 
54. 1 
45.0 
41. 4 

33.4 
30.4 
28. 8 

Guide  Width 0. 2A 



I .o 0.8 0.6 0.4 0.2 0 
RELATIVE H-FIELD 

Fig. 9. Radiation  pattern for  TEM mode  parallel  plate  waveguide ( h b  = 0. 3 ) .  



TABLE V 

W 
W 

Theta 
in  

Degrees 

1 
20 
40  
60  
8 0  
9 0  

120 
140 
160 
180 

Mag 

1. 0 
0.964 
0.868 
0. 746 
0.629 
0. 578 
0.466 
0.422 
0. 397 
0. 390 

W eine r Hopf 

i Phase 89. 1 
71. 1 
54. 9 
38.8 
27. 7 
23. 5 
15. 3 
12. 7 
11. 3 
10. 9 

T Double Diffraction i 
Mag 

1. 0 
0.961 
0.859 
0.737 
0.648 
0.520 
0.446 
0.4 13 
0.393 
0.387 

Phase 

89. 1 
70. 9 
52. 3 
35. 1 
19. 7 
23. 5 
17. 3 
14.8 
13. 5 

Surface  Diffraction 
Without  Third  Term With Third  Term I 
Mag 

0.851 
0. 729 
0.616 

0.461 
0.420 
0.397 

0.567 

Phase 

54. 1 
39. 9 
29. 0 
24. 9 
17. 0 
14. 4 
13. 2 

0.887 

0.643 
0.591 
0.475 
0.429 
0.401 

0. 761 

Phase 

53. 3 
38.4 
27. 2 
23. 1 
15.4 
13. 1 
12.6 

Guide  Width 0. 3 1  



I ,o 0.8 0.6 0.4 0.2 0 
RELATIVE H-FIELD 

Fig. 10. Rad ia t ion   pa t t e rn  for  TEM mode   pa ra l l e l   p l a t e   wavegu ide  (h/X = 0.4) .  



TABLE V I  

Theta 
in 

Degrees 

1 
20 
40 
60 
80 
90 
120 
140 
160 
180 

T We ine r Hopf 

1. 0 
0.948 
0.817 

0. 520 
0.659 

0.46 4 
0. 352 
0. 312 
0. 29 1 
0. 284 

Phase 

88. 7 
65. 2 
42. 8 
26. 0 
12. 5 
8. 0 
2. 2 

-0. 6 
- 1. 4 
-1. 5 

Double Diffraction 

Mag 

1. 0 
0.943 
0.797 
0. 617 
0.463 
0.437 
0.353 
0.318 
0.299 

Phase 

88. 7 

42. 5 
23. 3 
5. 3 
10.6 
3.6 
1.4 

0. 3 

65. 2 

Surface  Integr 
Without  Third Termjl 

0.815 
0.658 
0.529 
0.469 

0.321 
0.300 

0.360 

Phase 

43.8 
26. 7 
14. 2 
10. 1 
2.8 
0. 7 
-0. 0 

ation 
With Third  Term 

Phase 

Guide  Width 0.4X 



W 
Q, 

I ,o 0.8 0.6 0.4 0.2 0 
RELATIVE H-FOELO 

Fig. 11.  Rad ia t ion   pa t t e rn   fo r  TEM mode   pa ra l l e l   p l a t e   wavegu ide  (h/X = 0. 5 ) .  



TABLE VI1 

Theta 

Degrees 

1 
20 
40  

w 60 
80  
90  

120 
140 
160 

4 

18 0 

~ ~~ 

W einer Hopf 

1. 0 
0.931 
0. 762 
0. 573 
0.420 
0. 364 

0. 229 
0. 213 
0. 209 

0. 261 

Phase 
Double  Diffraction It 

1. 0 
0.928 
0.748 
0.533 
0.346 
0.357 
0.270 
0.239 
0.223 

Phase 

88.4 
59. 5 
33.2 
13.9 
0.9 

-2.6 
-9. 0 

-10.4 
-10.9 

Surface  Integr 
Without  Third  Term I 

0. 774 
0. 583 
0.435 
0.376 
0.272 
0.239 
0. 223 

Phase 

33. 0 
12. 8 
-0.4 
-4. 5 

-10.1 
-1  1.2 
-1  1.3 

a tion 
With  Third  Term 1 

T Phase 

- 

- 

Guide  Width 0. 5 1  



C H A P T E R  V 

CONCLUSION 

In this publication  the  radiation  pattern of the  thin-walled 

parallel-plate  waveguide is analyzed  by a surface  integration  method. 

This   analysis   gives   an  improvement   in   the  accuracy of the  pattern  in 

the  region  near  the  plane of the  guide  aperture, a s  compared  to  con- 

ventional  wedge  diffraction  analysis.  The  comparison is  based  on 

the  exact  solution  given  in  Appendix B and  which is  valid  for  guide 

widths   f rom 0 to 0. 51. The  radiation  pattern  obtained  by  the  surface 

integration  analysis  agrees  quite  well   with  the  exact  pattern  for 

guide  widths  ranging  from 0. 1 to 0. 5X. By the  nature of the  surface 

integrat ion  analysis ,   i t s   accuracy  increases   with  guide width. 

The  surface  integrat ion  approach m a y  be  aFplied  to  other  dif- 

f ract ion  problems as  a means  of overcoming  the  limitations of the 

wedge  diffraction  method.  Specifically  the  radiation  pattern  analysis 

presented here may be extended  to  other  waveguide  geometries, i. e., 

guides  mounted  in  infinite  ground  planes  and  guides  with  arbitrary 

truncation  angles. 
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APPENDIX A 

The  two-dimensional  problem of the  electromagnetic  field,  in 

the  neighborhood of a conducting  wedge,  illuminated by a plane  wave, 

was  first solved  by  Sommerfeld.  The  solution  for a half-plane  (zero 

wedge  angle)  was  formulated  in  terms of the  Fresnel  integral .  

Subsequently,  Pauli  formulated the solution  for  wedges of a r b i t r a r y  

angles  in  which  the  dominant  term is the  Fresnel  integral   giving, 

I1 n 

OD 

X 1 e-jT2dT t [Higher   Order   Terms]  

where 

a =  1 +  c o s +  

and n specifies  the  wedge  angles  (2-n) TT. 
For  the  half-plane, i. e., n = 2, the  higher  order  terms of 

Eq. (37) are  identically  zero.  

The  exact  formulation  based  on  an  eigenfunction  expansion 

may  be  used  which  converges  rapidly  for  small   values of p 

I 
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where J ,  is the  cylindrical  Bessel  function of order  m/n  and - 
n 

1 m = O  

2 m f o .  

The  solution  to  the  plane  wave  diffraction, of a wedge  with 

wedge  angle  (2-n) TT, may  be   expressed   in   t e rms  of a scalar  function 

that  reFresents  the  component of the  electromagnetic  field,  normal 

to  the  plane of study  in Fig. 12. 

INCIDENT  REFLECTION 
PLANE WAVE BOUNDARY 

\ /  
/ 

/ 
/ 

/ 

INCIDENT 
REGION 

INCIDENT AND 
REFLECTED REGION 

FIELD 
POINT 

’ SHADOW 
\ REGION 

\ 

8 ’ \ 
SHADOW BOUNDARY 

-\ 

Fig. 12. Geometry of wedge  diffraction. 

The  total   f ie ld   may  be  expressed  as  

For  plane  wave  incidence  the  geometrical  optics  fields  are 

(40) 
jkp cos(+  -+ o) incident  region Uo = e 
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(43) 
jkp c o s ( +  -+o 1 ejkP cos(+ +9, Uo = e 

incident  and 
reflected  region 

(4 2) uo = 0 shadow  region 

The  diffracted  field is given by 

Since  only  the  half-plane is employed  in  this  publication,  the 

following  equations  are  restricted to n = 2 for  simplification. 

For   large  values  of kp( 1 + cos +) 

In t e r m s  of this  approximation,  the  radiation  may  be  thought of 

as   that   f rom a l ine  source  at  the  edge  radiating a cylindrical 

e - jkp 
wave of the  form K - . This  l ine  source  concept  is   an 5 
extremely  useful  means of visualizing  edge  diffraction.  The  dif- 

f ract ion of a cylindrical  wave  by a wedge is  i l lustrated  in 

Fig. 13. 
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OBSERVATION 
POINT 

IMAGE 

Fig. 13. L i n e   s o u r c e   n e a r   f i e l d   d i f f r a c t i o n  

The g e o m e t r i c a l   o p t i c s  field i n   t h i s   c a s e  is  gi \ ,en by  

-jkR e - j k [ r 2 t r 0   - 2 r r o c o s ( $  -Go)] 2 !. 
2 

e (44) u, = - - - ~ .~ 

7 1 
VR [ r 2  t r," - 2 r r 0  C O S ( +  - q  o) ] S 

i nc iden t   r eg ion  

1 
2 

- j k R   - j k [ r   t r o - 2 r r , c o s ( +  -+o) ] -jkR' e 

JR JF [ r 2 +  r,' - 2 r r 0   c o s ( +  - I C . ~ )  3 4 

2 2  
- 

e 
(45) u, = - -t e- 

1 

1 

- jk [ r2  t ro - 2 r r ,  C O S ( +  + + o )  1 '  2 
- 

t 
e 

2 - 1 

[ r ' t  ro - 2 r r 0  C O S ( +  + $o) 3 4 

i n c i d e n t   a n d   r e f l e c t e d  
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and 

(46) Uo = 0 shadow  region 

The  diffracted  field is accurately  given by8 
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APPENDIX B 

The  exact  solution  for  the TEM mode  radiation  pattern of 

the  parallel-plate  waveguide, as shown  in  Fig. 1, is  obtained  by 

the  Weiner-Hopf  techniqueq  and is given  by 

An  expression  for L + ( a )  which i s  valid  for 0 < - < TT is  given kh 
2 

by 

where 

For   r ea l   va lues  of CY and k and for -k < CY < k we  have 
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-j(kp + :) 

J=G- 
Therefore,  the  angular  variation  (with  the  factor e 

suppressed) i s  given by 

( 5 3 )  R (e) kh sin ')} kh 2' 
rr 

kh sin 8 

kh(1 - cos  0) - i kh( 1 - c o s  e) 
2rr 

1 - 0. 5772 t P n  
L 

n= 1 

4 5  
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